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Potential energy curves for Hell, Nell, and ArH are determined using large basis sets and high

levels of theory. The computed potential energy curves are in excellent agreement with the

experimentally determined model potentials for Hell and Nell, but differ with the model
potentials deduced for ArH by Tang and Toennies. We derive a potential based on the ab initio

calculations and our best estimate of the well depth; using this potential we are able to reproduce

the results of the orbiting resonance experiments of Toennies and co-workers.
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I. INTRODUCTION

The ground state potential energy curves of the rare-

gas hydrides are essentially repulsive, having only a weak

van der Waals minimum. Low levels of theory yield a rea-

sonable description of the repulsive portion of these poten-

tials. However, much better potentials, including an accu-

rate well depth, are required for determining the transport

properties of hydrogen atoms in rare-gas mixtures. Also,
the rare-gas hydrides are frequently employed in the devel-

opment of combining relations, l because the potential

curves for rare-gas dimers and hydrogen molecule are well

characterized. Therefore highly accurate rare-gas hydride

potentials can be used to check the functional form of the

interaction potential used in the combining relations.
In a recent study Tang and Toennies 2 derived model

potentials for the rare-gas hydrides, using combining rela-

tions, that are in excellent agreement with the best exper-

imentally derived potentials. For example, essentially the

same ArH potential is derived using the combining rela-

tions and by optimizing the parameters in the model po-
tential to reproduce the orbiting resonance experiment. 3

These rare-gas hydride potentials derived by Tang and

Toennies gave rise to nearly identical reduced potentials,

providing considerable confidence that the resulting poten-

tials were accurate. Disconcertingly, however, as part of a
study 4 on Ar+H 2, we found that the ab initio D e value for

ArH was only about two-thirds that of the Tang-Toennies

model potential. On the basis of other weakly bound sys-

tems, the computed potential was expected to be accurate
to within _20%. In addition, we recently found 5 that

while our NaHe + and NaNe + potentials were consistent

with Tang-Toennies model potentials of Ahlrichs et al., 6

our result for NaAr + was very different. While the bond-

ing in the rare-gas Na + systems is different than in rare-gas

hydrides, the difference between the ab initio and model

potentials only for the Ar systems was perplexing. Hence,

in this work we investigate the computational requirements

to determine the interaction potential for the rare-gas hy-

dride systems with an emphasis on ArH. By using very

large basis sets and high levels of correlation treatment we

are able to overcome the known difficulties in directly com-

puting weakly bound systems and, hence, demonstrate that

the potential well for ArH is shallower and broader than
that deduced by Tang and Toennies. 2

II. METHODS

The difficulties in accurately predicting the spectro-

scopic constants of a van der Waals potential based solely
upon ab initio calculations is well documented. 7 In fact,

nearly all of the accurate van der Waals potentials avail-

able are hybrid potentials or model potentials where the

parameters have been optimized to reproduce experimental
data. 8 The ab initio determinations are complicated be-

cause the interaction energies are very small in comparison

with the total energies and hence particular care is needed
in the design of the calculation. The convergence with the

one-particle basis set is very slow and thus it is difficult to

accurately compute the intermolecular correlation energy.
The basis set must be able to describe the dispersion coef-

ficients and at the same time the basis set superposition
error (BSSE) must be very small.

Extensive basis sets are employed in this study. The

details of the basis sets are given in the Appendix. The

smaller basis sets employed are based on atomic natural
orbital (ANO) sets 9 and the larger sets are generalized
contractions of the core with the valence functions uncon-

tracted. Even the smallest basis sets employed contain suf-
ficient numbers of diffuse functions to yield accurate po-

larizabilities for all of the rare gas atoms.

For Hell, we employ a multireference singles plus dou-

bles configuration interaction (MRCI) procedure that is

expected to be near the full CI result. First a MRCI cal-
culation is performed [in the self-consistent-field (SCF)

molecular orbital basis] that includes all single and double

excitations away from all distributions of the three elec-
trons among six a 1, two b1, and two b 2 orbitals. This is

followed by the same MRCI treatment using the natural
orbitals of the first MRCI calculation. At all r values the

reference space comprises more than 99.9% of the final CI
wave function. A similar procedure has been employed for

H 3 (Ref. 10) where it was shown that the MRCI energies

differed from the full CI results by < 1/zE h . For Hell, this
procedure reproduces the full CI energies of Knowles

et al. 11 to within 0.02/_E h .
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For the larger systems electron correlation is included

using the SCF based modified coupled pair functional

(MCPF) method 12 and coupled cluster single plus double

excitation method with a perturbational estimate of triple

excitations, 13 denoted CCSD(T). The CCSD(T) method

has been shown 14 to accurately describe the correlation

contribution when the SCF is a good zeroth-order descrip-

tion, as is the case for the rare-gas hydrides. Additionally,

calibration calculations are performed for ArH using com-

plete active space SCF/averaged coupled-pair functional 15

(CASSCF/ACPF) and interacting correlated fragmented

(ICF) approaches. 16 Two active spaces are employed. In

the first, the Ar 3p and 3d orbitals and the H ls orbitals are

active. While the Ar 3s electrons are not included in the

CASSCF active space, they are correlated at the CI level.

In the second, the Ar 3s, 4s, and 4d orbitals are added to

the active space. Following the notation of Lengsfield

et al.,16 the ICF calculations derived from these two active

spaces are designated ICF-2 and ICF-3, respectively. A

similar notation is used for the ACPF calculations. Be-

cause of the size of the resulting CI expansions, reference

selection was required; all spin couplings of configurations

with coefficients larger than a selected threshold for a

range of r values are included as references.

We computed the BSSE using the full counterpoise

correction. 17 For the calculation of the BSSE at the CI

level we attempted to employ a reference list equivalent to

that used tbr ArH. If the H-like orbital was occupied in the

ArH reference configuration, the H orbital occupation was

reduced by one in the reference list in the BSSE calcula-

tion. When the H orbital was unoccupied in the ArH ref-

erence, then a a electron was removed. For the BSSE cal-

culations, the same active space was used as for the

molecular system with the H orbital frozen (except for

orthogonalization) in its long range form. We also at-

tempted to employ a CAS-fragment approach 18 (where the

infinite separation orbitals, after orthogonalization, are

used at all r values) to determine the BSSE. However, the

CAS-fragment BSSE corrections were unreliable; these

BSSE corrections did not monotonically increase with de-

creasing r, for example. At all levels, the Rg(H) BSSE was

small in comparison to the interaction energy. The H(Rg)

BSSE was insignificant, < 0.02 /rE h even at the shortest

bond distances considered. All of the computed results

were corrected for the BSSE unless otherwise noted.

The SCF/MCPF and MRCI/ACPF calculations were

performed using the SEWARD (Ref. 19)--SWEDEN (Ref.

20) program system. The closed shell CCSD(T) calcula-

tions were performed using TITAN. 21 The open shell

CCSD(T) calculations were performed using the program

developed by Scuseria. 22 All calculation were performed on

the NASA Ames Central Computer Facility CRAY Y-MP

or Computational Chemistry Branch IBM RISC System/

6000 computers.

III. RESULTS AND DISCUSSION

The computed spectroscopic constants are reported in

Table I. There are few accurate ab initio calculations with

which to compare. Hell possibly has the smallest potential

TABLE I. Spectroscopic constants" for Hell, Nell, and ArH.

rc (,_) De (meV)

HeH

3.53 0.616 Present MRCI

0.626 4- 0.005 Present estimate

3.46 0.666 Combining rules b

3.59 0.601 Molecular beam and diffusion e
3.53 0.618 HFD-B model of Scoles e
NeH

3.46 1.346 Present MCPF

3.44 1.491 Present CCSD(T)

1.51 4-0.02 Present estimate

3.43 1.49 C,_mbining rules b

3.40 1.46 BMD (p) from integral cross section d
ArH

3.67 3.42 MCPF-g basis

3.63 3.84 CCSD(T)-g basis
3.65 3.52 MCPF-h basis

4.05 ± 0.15 Present estimate

3.54 4.67 Combining rules b

3.55 4.64 Orbiting resonance b
3.63 3.81 HFD model e

3.62 4.16 Differential cross section f

aThe spectroscopic constants are computed with a quadratic fit in 1/r.
Computed results are corrected for BSSE.

bReference 2.
CReference 28.

dReference 30.
eReference 34.
rReference 31.

well of any ground state atom-atom interaction. Most of

the calculations 23 on the rare gas hydrides have been stud-

ies of the bound excited states that were not designed to

obtain accurate results for the van der Waals minima. The

early calculations on Hell are summarized in Ref. 11 and

references therein. The agreement of our results with the

MCSCF results of Das et al.24 is outstanding, particularly

considering these calculations were performed 15 years

ago. The agreement is, in part, due to a cancellation of

errors. In addition to not correcting for BSSE, the MCSCF

procedure employed is now known to slightly overestimate

the bonding contributions in the well region. The most

accurate previous result for Hell is from the full CI cal-

culations of Knowles, Murrel, and Braga;11 our computed

potential is considerably deeper than their value of 0.498

meV. As our MRCI procedure is essentially a full CI and

both potentials have been corrected for BSSE, the differ-

ence in the results is due to the much larger basis set em-

ployed in this work.

Full CI studies 25 on a number of systems have demon-

strated that the principal source of error in large MRCI

calculations is deficiencies in the one-particle basis set.

Contrary to assumptions in the early 1980s, an error of

20% to 25% in the well depth determined by Knowles

et al. 11 is not unexpected considering the size of the polar-

ization basis employed. Errors of this magnitude are com-

mon for weakly bound systems. Improvements in our basis

set (and n-particle treatment for Nell and ArH) will un-

questionably slightly increase the binding energies and de-

crease the bond lengths. As a rough estimate of the remain-
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ing basis set deficiency, we have employed the magnitude

of the BSSE in past work with some success126 For Hell,

this yields an estimate of the true "nonrelativistic Born-

Oppenheimer" binding energy of 0.664±0.048 meV,

where the error bar is one-half the BSSE at the computed

minimum. While not rigorous, this estimate provides some

measure of the reliability of our calculation. We must note,

however, that applying this procedure to the results of

Knowles etaL tl would give an estimate of 0.504-0.005

meV. This estimate is outside that derived from our results.

This points to the limitations in using the BSSE to estimate

the basis set incompleteness; it cannot account for serious

deficiencies in a basis set, in the case of Knowles et al., the

limited d and f basis set and the lack of diffuse functions.

In order to obtain improved error estimates, two addi-

tional basis sets were employed to calibrate our Hell cal-

culations. The first consists of fully uncontracting the basis

sets for both He and H. This lowered the total energy for

Hell at r=6.75 by 5.840 meV but did not affect the bind-

ing energy to within our convergence criteria (0.0003

meV) for the CI calculations. The BSSE was essentially

the same as for the original basis set, demonstrating that

the contraction of the tight functions was not the source of

the larger BSSE in this work. The second calibration added

two uncontracted h functions to He (with exponents of

4.098 and 1.6392) and replaced the (3p2dlf) polarization

basis set for H with the (4p3d2flg) polarization functions

from the correlation consistent quintuple-zeta set. 27 This H

basis is then supplemented with two diffuse p(0.0984 and

0.0394), a diffuse d(0.1972), and a diffuse f(0.35) func-

tion giving a basis set of the form (lls6p4d3flg)/

[6s6p4d3flg]. The basis set yields a Hell binding energy

(at 6.75a 0) that is 0.005 meV larger than that obtained

with the original basis set. These results suggest that fur-

ther basis set improvements will have only a small effect on

the well depth. If we assume that further improvements in

the basis set will increase the well depth by no more than

0.01 meV, twice the improvement we obtained, we then

estimate the binding energy to be 0.626 ± 0.005 meV; this is

obtained by adding 0.005 meV (half of 0.01 meV) to our

computed results and assigning this as the uncertainty.

Our computed binding energy for Hell is in very good

agreement with some of the experimentally derived poten-

tials. Our computed potential for Hell is shown in Fig. 1

and compared with the Scoles potential (reported in Ref.

28) and the Tang-Toennies combining rule potential. 2 The

agreement of our results with the Hartree-Fock plus dis-

persion (HFD-B) potential of Scoles is exceptional and all

of the potentials shown agree as to the long range interac-

tion. Our computed D e and r e are nearly identical with the

HFD-B potential of Scoles and our computed D e is only

slightly deeper than the model potential deduced from the

molecular beam and diffusion data 28 (see Table I). The

computed D e is much larger than the Tang-Toennies

model determined by Tang and Yang 29 (not reported in

Table I) by fitting the low energy molecular-beam data of

Toennies, Welz, and Wolf. 3 Our computed well depth is

10% smaller than the combining rule result of Tang and
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FIG. 1. Comparison of the calculated MRCI potential energy curve for

Hell with the Scoles HFD-B potential (Ref. 28) and the Tang and Toen-
hies combining rule potential (Ref. 2).

Toennies, but this is in agreement with their estimated

accuracy for this potential.

The MCPF potential energy curve (corrected for

BSSE) for Nell is shown in Fig. 2 and is compared with

the Tang-Toennies combining rule potential and the Born-

Mayer plus dispersion [BMD(p)] potential of Hishi-
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FIG. 2. Comparison of the calculated MCPF potential energy curve for
Nell with the Tang and Toennies combining rule potential (Ref. 2) and

the BMD(p) potential (Ref. 30). Also shown are the CCSD(T)
results--these are the squares superimposed on the Tang and Toennies
potential.
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FIG. 3. Comparison of the calculated MCPF potential energy curve for
ArH with the Tang and Toennies (Ref. 2) combining rule potential. Also

shown shown are the CCSD(T) results and the "empirical" potential
derived in this work.

TABLE II. ArH calibration study?

re (A) D e (meV)

MCPF results

Ar basis set tests, with the [6s5p3d2 f] H basis
h-basis [12sl tp8d8f4g2h] 3.652 3.517

g-basis [12sl lp8d8f4g] b 3.666 3.417(3.460)

f-basis [12sllp8d8f] c 3.679(3.708) 3.192(3.143)

d-basis [12sl lp8d] 3.800 2.419
core basis 3.703 3.363

core basis (2s2p) 3.703 3.343
Calibration basis 3.744 3.130

Calibration basis results

MCPF 3.744 3.130

CCSD 3.75 3.004

CCSD(T) 3.71 3.453
ACPF-2(0.01 )d 3.72 3.289

ICF-2(0.01 ) 3.65 3.544

ICF-3(0.015) 3.74 2.860

ICF-3(0.01 ) 3.73 2.986

aThe spectroscopic constants are computed with a quadratic fit in 1/r. All
results are corrected for BSSE.

bThe effect of expanding the H basis set to [6s6p4d3flg] is given in
parentheses.

CThe effect of deleting the f functions on H is given in parentheses.
dThe reference selection threshold is given in parentheses.

numa. 3° The MCPF D e is --10% less than the Tang-

Toennies D e with the BSSE correction being -- 10% of the

well depth--the BSSE uncorrected MCPF potential (not

shown) agrees very well with the Tang-Toennies potential

in the well region although it still underestimates the long

range interaction slightly. Using the CCSD(T) method

(corrected for BSSE) deepens the well and gives results

nearly identical with the Tang-Toennies potential. Im-

provements in the one-particle basis set and correlation

treatment will slightly deepen the potential. Using the

BSSE correction to estimate the error would give an esti-

mate of 1.544-0.07 meV for D e. As for Hell we suspect

that this error estimate is too pessimistic and believe that a

more realistic estimate is 1.51-4-0.02 meV. We note that

deleting the most diffuse s, p, d, f, and g function on Ne

reduces the binding energy by 0.02 meV which is consis-
tent with our estimate.

The ArH MCPF results with the g-basis are shown in

Fig. 3 along with the Tang-Toennies combining rule po-

tential. 2 The Tang-Toennies potential accurately repro-

duces the orbital resonance experiments of Toennies et al. 3

leading to the suggestion that the resulting potential is very

accurate. However, the MCPF and Tang-Toennies poten-

tial differ qualitatively. Not only is the ab initio potential

significantly shallower with a much longer bond length, the

calculated potential is noticeably broader. Around the min-

imum, the calculated energies differ by < 2 #E h over a

0.5a 0 region. As the MCPF potential does not reproduce

the orbital resonance experiments, 3 a major goal of the

present study is to calibrate the reliability of the computed

potential.

The results of our calibration studies of both the one-

particle and n-particle basis sets are summarized in Table

II. The well depth converges much more slowly with the

expansion of the basis set than for Hell or Nell. We obtain

a 0.1 meV increase in D e from h functions suggesting that

further expansion of the Ar basis set would increase D e by

on the order of 0.2 meV. The difference in the convergence

of the rare-gas-H spectroscopic constants with expansion

of the basis set can be predicted based on the convergence

of D e and r e with the inclusion of higher order dispersion

terms in the Tang-Toennies expansion. The slower conver-

gence of this expansion indicates that the higher order

terms are more important; the description of the higher

order dispersion terms requires the higher angular momen-

tum functions. Expansion of the H basis set also increases

the well depth slightly. The f-functions on H contribute

0.05 meV. Expansion of the H basis set to the

[6s6p4d3flg] set increases the binding energy by an addi-

tional 0.05 meV. Because the computed D e differed signif-

icantly from the Tang-Toennies result, 2 we also investi-

gated the importance of Ar 2s2p correlation. We find that

the inclusion of 2s2p correlation does not effect the bond

length and only slightly reduces the binding energy. Be-

cause of the difficulties in accurately computing core cor-

relation effects, we use this result only to estimate the mag-

nitude of the core correlation effects. We conclude that

core correlation effects are extremely small and can be ig-

nored. Our basis set calibrations thus suggest that the bind-

ing energy at the MCPF basis set limit is 3.67 4-0.15 meV,

where the error bar is half of our estimated basis set error

of 0.30 meV.

Improvement of the correlation treatment will also in-

crease the computed binding energy. The CCSD(T) bind-

ing energy is _ 10% deeper than the MCPF result, as was

found for Nell. The deeper well also leads to a shorter

bond length as expected. As found in other cases (see Ref.
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5 for example), the CCSD approach yields a smaller bind-

ing energy than the MCPF; clearly triple excitations are

required for accurate results. For both Nell and ArH the

MCPF binding energies are consistently 10% smaller than

the CCSD(T) results but the resulting potential energy

curves are nearly parallel. The CCSD(T) potentials are

shifted only slightly to shorter r. We estimate that the ArH

D e is 4.054-0.15 meV by adding the estimated basis set

incompleteness to the CCSD(T) result. Note, using the

BSSE to estimate the error leads to a similar result, 3.98

+0.14 meV.

Because triple excitations account for 13 % of the well

depth, higher levels of correlation treatment will probably

lead to an even larger binding energy. We therefore em-

ployed multireference methods to investigate the conver-

gence of the correlation treatment. Unfortunately, the CI

expansion lengths quickly became intractable and refer-

ence selection was required even for the smallest active

spaces. The ACPF-2 binding energy is about halfway be-

tween the MCPF and CCSD(T) results. However, we are

unable to either tighten the reference selection threshold or

expand the active space. Thus the ACPF-2 calculations

support the CCSD(T) results over the MCPF, but we are

unable to estimate the remaining error at the CCSD(T)

level using the ACPF approach.

The ICF approximation leads to smaller CI expansions

than the ACPF approach. Using this approach we are able

to expand the active space somewhat, but not to conver-

gence. In addition, the ICF results are greatly affected by

the reference selection threshold. Thus, the ICF calcula-

tions, like the ACPF calculations, cannot be used to cali-

brate the CCSD(T).

The ab initio calculations demonstrate that the ArH

potential in the vicinity of the van der Waals minimum is

shaped differently than previously thought. However, due

to the number of electrons in this system and the slow

convergence with basis set, our calculations are not suffi-

ciently converged to definitively determine the potential.

However, we can show that there exists a potential based

on our estimates of the theoretical potential energy curve

that reproduces the scattering data of Toennies et al.3 Con-

sider the empirical potential

--[_-_] }, (1)

with

_( r) =r--a(1 +exp[ --a( r--rl/2) ])-1. (2)

This is a Lennard-Jones potential with a modified argu-

ment. The modification is designed to allow the potential to

be stretched out in the vicinity of the minimum to mimic

the observation that the potential is flatter there. This func-

tion contains the five parameters De, a, a, a, and rl/2. We

fix D e and or by requiring that the potential minimum have

depth 0.1488 mEh, our estimate of the D e, and that V(r o)

=0, where r0 is the experimental value 31 of 5.95a 0. To

confine the "stretching" to the minimum, we take rl/2

= 6.8a 0, our estimate of r e. This leaves the two parameters

a and a which were varied by hand to reproduce as best
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FIG. 4. (a) Cross sections from the Toennies et al. (Ref. 3) experiment
and the Tang and Toennies combining rule potential (Ref. 2) as a func-
tion of translational energy. The scale factor S= 158a2. (b) Cross sections

from the Toennies et al. (Ref. 3) experiment and the present empirical
potential as a function of translational energy. The scale factor S= 162a0z.

possible the experimental cross sections of Toennies et al. 3

The cross sections were computed using phase shifts deter-

mined by a banded matrix formulation of the Numerov

method. 32 The final parameters are ct=l.2ao 1 and

a=0.4a0; this potential is also shown in Fig. 3 and is con-

sistent with an extrapolation of the CCSD(T) results. Es-

sentially the same potential is derived by assuming a Tang-

Toennies potential form where the repulsive parameters

are derived from our estimated re and D e and the experi-

mental value for r 0.

In Fig. 4, we compare the cross sections from the

present empirical potential and the Tang and Toennies

combining rule potential 2 with the experimental data of

Toennies et al. 3 The present empirical potential gives cross

sections which fit the experimental data with smaller

weighted root-mean-square (rms) errors than the Tang
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and Toennies potential, 1.6 vs 3.7. These rms errors are
computed as

rms error= _ {[acalC(Ei)
i=1

\ t/2

__So-exP(Ei) ]/[SAtyexP(Ei) ]}2) , (3)

where N is the number of experimental cross sections,

acale(Ei) is a calculated cross section at energy Ei, creXp(Ei)

is an experimental cross section at energy El, S is a scale
factor (the experimental cross sections are reported in ar-

bitrary units), and AcrexP(Ei) is the tabulated error in the
experimental cross sections. The scale factor S was deter-

mined for each potential by minimizing the rms error. We

attempted to further refine the ArH potential by employing

the inversion procedure of Heo et al. 33 using the experi-

mental cross sections of Toennies eta/. 3 and both potential
curves as initial guesses. However, due to the errors in the

experimental data, the inversion procedure did not yield an

improved potential. In these calculations no velocity aver-

aging of the theoretical results was performed. Velocity
averaging using the parameters of Ref. 3 has only avery
small effect on the results.

IV. CONCLUSIONS

Accurate potential energy curves have been deter-

mined for Hell, Nell, and ArH. The computed potential

energy curves for Hell and Nell are in agreement with the
accepted experimentally derived potentials, with our rec-

ommended binding energies being only slightly larger than
the experimentally derived values. The errors in the calcu-

lations are slightly larger for ArH because of the slower

convergence in the computed spectroscopic constants with
basis set expansion. The slower convergence is likely to

carry over to other Ar systems and suggests that the basis

set errors in our NaAr + results are possibly larger than we
had assumed. 5 We note that the effect of electron correla-

tion on D e is different from ArH; for NaAr + the

CCSD(T) and MCPF binding energies are essentially the
same. The computed potential for ArH is both shallower

and broader than the ArH potential deduced by Tang and

Toennies. 2 However, based upon our extrapolated spectro-

scopic constants, we can derive a potential energy curve

that accurately reproduces the orbiting resonance experi-
ments of Toennies et al. 3While not unique, the existence of
such a potential lends credence to our estimate for the ArH

binding energy.

APPENDIX

The hydrogen basis set derived from the 10s hydrogen
ZS basis of Ref. 35 supplemented with a diffuse
s(0.024 86). The innermost 6s functions are contracted

based on the SCF orbitals and the outer five functions are

uncontracted. This is supplemented with the three p, two
d, and one f function optimized by Dunning z7 and aug-

mented with two diffuse p(0.1168 and 0.0467), a diffuse

d(0.2648), and a diffuse f function (0.5588). All of the

polarization functions are uncontracted giving a final basis

set of the form (lls5p3d2f)/[6s5p3d2f]. This basis set
without the diffuse f function was shown 36 to yield an

accurate interaction potential for both the repulsive region
and van der Waals minimum of H + H 2.

The rare gas basis sets are augmented versions of the

basis sets we employed in our recent study of the metal
ion-rare gas systems. 5The He s basis set is derived from the

(1 ls9p) set 37 optimized for He(3P) supplemented with a

diffuse s function (0.0448). An even-tempered (/3=2.5 is

used through out this work) (8p6d4f2g) polarization set
with a0(p)=0.05 , ao(d)=0.1518 , a0(f)=0.455, and
a0(g)=l.366 is added. The basis set is contracted to

[3s3p2dlflg] using the ANO procedure 9 for the ground

state of He atom. The outermost three s, three p, three d,
and two f functions are uncontracted and this basis is

augmented with one additional diffuse s, p, and d function,

two diffuse f functions, and three diffuse g functions giving
a basis set of the form ( 13s9p7d6f5g)/[7s7p6d5f4g]. The

atomic polarizability, computed at the CCSD(T) level

with a field strength of 0.005 a.u., is 1.386a 3 compared with
the 1.333a 3 value estimated by Reinsch and Meyer, 38 and
1.384a 3 value of Rice et a/. 39

The Ne basis set is derived from the (13s8p) primitive

set of van Duijneveldt. 4° Six even-tempered d and four

even-tempered f polarization functions are added, ao(d )
=0.20 and ao(f) =0.61, respectively. This basis set is con-

tracted to [4s3p2d2 f] using the ANO procedure. The two

outermost s, p, and d and the outermost f primitive func-

tions are uncontracted. This basis is then augmented with

three diffuse (even-tempered) s and p, two d and f func-

tions, and four g functions [a0(g ) =0.2039] resulting in a
final basis set of the form (16sl lp8d6f4g)/[9s8p6d5f4g].

This basis set yields a polarizability at the CCSD(T) level
of 2.676a 3, which is in agreement with the recommended

value (2.67a 3) of Miller and Bederson 41 and the computed
value of Rice et al. 39

The Ar basis set is derived from the (17s12p) set 37

augmented with three diffuse even tempered s and p func-

tions (ratio 2.5) and an even-tempered (8d8f4g2h) polar-

ization set (a0=0.0112, 0.016, 0.071, and 0.213 for the d,

f, g, and h functions, respectively). This sp primitive set is
contracted [(2+ 10)s(1 +6)p] based on the Ar SCF orbit-
als, where (n-Fro) indicates that n functions are con-

tracted based on the SCF orbitals and the outermost m

primitive are uncontracted. The polarization functions are
left uncontracted giving a final basis set of the form

(20s15p8d8f4g2h)/[12sl lp8d8f4g2h]. For calibration a

number of other Ar basis sets were employed. The first sets

start from the full basis set and delete successively the h, g,
and f basis functions; these basis sets are designated

h-basis, g-basis, etc. by the highest angular momentum

functions retained in the basis set. In order to investigate
the importance of 2s2p correlation, the most diffuse s, p, d,

f, and g function are deleted and the basis is supplemented
with an additional compact d and f function. This basis set

is of the form ( 19s14p8d8f4g)/[1 lslOp8dSf4g] and is des-

ignated core-basis. The final basis sets reported are derived

from the (17s12p6d4f)/[8s7p4d2 f] set employed in pre-
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vious work 5 by augmenting the basis with an even-

tempered diffuse s, p, d, and f function, giving a basis set
of the form (18s13p7d5f)/[9s8p5d3f]. This basis set is

designated "calibration" and is used to calibrate the

n-particle treatment. The f functions on hydrogen are de-
leted when this basis set is used. The calibration basis set

and the h-basis set yield polarizabilities of 11.30 and

11.14a03 at the CCSD(T) level. We estimated the 2s2p cor-
relation contribution by augmenting the h-basis set with a

compact d and f and obtain a polarizability of 11.10a 3.
These results are in good agreement with the experimental
result of 11.07 (Ref. 42) and the value of 11.08 derived

from dipole oscillator strength distributions. 43 Our results
are also in good agreement with the estimate of Rice

et al.44 but suggest that the basis set incompleteness error
was larger than their estimate.
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